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Abstract: Liquid crystal display (LCD) devices are well known for their slow responses due to the physical 

limitations of liquid Crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This 

effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an 

efficient de blurring algorithm are needed.  There are three main contributions of this paper: modeling, 

analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-

tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is 

provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed.  

Keywords: LCD, Modeling, Analysis, Algorithm  

 

I. Introduction 
Liquid Crystal Display (LCD) devices are known to have slow responses due to the physical limitations 

of liquid crystals (LC). LC are organic fluids that exhibit both liquid and crystalline like properties. They do not 

emit light by themselves, but the polarization phase can be changed by electric fields [1]. A common circuit 

used in LCD to control the electric fields is known as the thin-film transistor (TFT) [2]. Although TFT responds 

quickly, it takes some time for the LC to change its phase. This latency is known as the fall time if the signal is 

changing from high to low, or the rise time if the signal is changing from low to high. Since the fall and rise 

times are not infinitesimal, the step response of an LC exhibits a sample-hold characteristic (see Fig. 1). 

 

 
Fig. 1. Signaling characteristics of a cathode ray tube (CRT) and an LCD. 

 

CRT shows spontaneous response, whereas LCD demonstrates a sample-hold response. 

Compared to LCD, traditional cathode ray tube (CRT) displays do not have the sample-hold 

characteristic. When a phosphor is exposed to electrons, it starts to emit light. As soon as the electrons leave, the 

phosphor stops emitting light. The latency of a phosphor is typically between 20 and 50 s [2], but the time 

interval between two frames is 16.67 ms for a 60-frame per second video sequence. In other words, the latency 

of a phosphor becomes negligible compared to the frame interval. Due to the sample-hold characteristic of LCs, 

fast moving scenes displayed on the LCD are often seen blurred. This phenomenon is known as the LCD motion 

blur. We emphasize the word ―motion‖ because if the scene is stationary, LCD and CRT will give essentially 

the same degree of sharpness. 

 

II. Existing System 
There are a number of methods to reduce LCD motion blur. Backlight flashing presented by Fisekovi et 

al. [3] is one of the earliest methods. In this method, the backlight (typically a cold cathode fluorescent lamp, 

CCFL) is controlled by a pulse width modulation [4]. Backlight flashing reduces motion blur but it also causes 

fluctuation in luminance. If the flashing rate is not high enough, the luminance fluctuation can be seen by human 

eyes, hence, causing eye strains. Therefore, in order to surpass the human eye limit (MPRT1 5.7 ms [6]), some 

advanced CCFL control methods are used, such as the active lamp technique presented by Yoon et al. [6]. 
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Signal overdrive [7] is another commonly used method to reduce motion blur. The motivation to 

overdrive a signal is that the phase change of an LC is faster if the electric field is stronger. This phenomenon is 

explained in [1] and experimentally verified in [8]. Therefore, if the input signal is changing from 0 to 200 (in 

grayscale), then instead of sending a signal from 0 to 200, the overdrive circuit produces a signal from 0 to 210 

(or a different value, depending on the circuit). Signal overdriving is often implemented  

 

 
Fig. 2. Two commonly used frame rate up conversion (FRUC) method. Top: full frame insertion method by 

motion compensation (MC). Bottom: black frame insertion method. 

 

Using a lookup table, and a particular value is determined by the intensity change of a pixel. Image 

contents such as spatial and temporal consistencies are not considered. Frame rate up conversion (FRUC) 

schemes is the third class of methods. The motivation of FRUC is that if the LC response can be improved, then 

the frame rate of LCD should also be increased. There are two major FRUC methods in the market: one is black 

frame insertion, as presented by Hong et al. [9], Fig. 2 illustrates these two FRUC methods. The last class of 

methods is the signal processing approach, in which the input signal is over sharpened so that it can compensate 

the motion blur caused by the LCD. Among all the methods, the motion-compensated inverse filtering (MCIF) 

techniques presented by is the most popular one. MCIF first models motion blur as a finite impulse response 

(FIR) filter. Then, it finds an approximated inverse of the FIR filter to over sharpen the image. MCIF can also be 

used together with FRUC scheme. Another signal-processing approach is the de convolution method The de 

convolution method gives better image quality than MCIF in terms of peak SNR (PSNR) and visual subjective 

tests. 

 

III. Proposed System 
There are three objectives of this paper: modeling, simulation, and algorithm. 

First of all, we present a mathematical model for the hold-type LCD motion blur in the spatiotemporal 

domain. We do not consider the problem in the frequency domain because a video sequence is intrinsically a 

space-time signal. It is more intuitive to study the motion blur in the spatiotemporal domain directly. The 

modeling part of this paper is a generalization of a fundamental equation for LCD motion blurs modeling [(7)]. 

However, they implicitly assume that the human eyes are able to track objects perfectly. This is not true in 

general because our eyes have only limited range of tracking speed. Do not explain the cause of such a limit and 

they do not justify their MCIF design from a human visual system point of view. In contrast, our study of the 

eye-tracking limit is based on literature of cognitive science and verified using subjective tests. The second 

objective of this paper is to provide a tool for the simulation of motion blur. A limitation of Pan’s equation [(7)] 

is that the integration has to be performed in the temporal domain. To do so, the time step of the integration 

should be small, for otherwise, the integration cannot be approximated using a finite sum. Since the frame rate 

of a video sequence is fixed, in order to make the time step small, we need to interpolate intermediate frames. 

Temporal interpolation is time consuming: if the time step is 1/10 of the time interval between frames, then ten 

intermediate frames are needed. Therefore, the simulation of motion blur will be difficult. 

The spatiotemporal equivalence has been used extensively in the literature but not proved. It is used the 

spatiotemporal equivalence to improve LCD image quality; Becker used the spatiotemporal equivalence to show 

the relation between blur edge width (BEW) and blur edge time for backlight scanning [4]; Tourancheau used 

the spatiotemporal equivalence to compare four commercially available LCD TVs Klompenhouwer showed the 

relation between BEW and frequency response of the blur operation Yet, none of these papers attempted to 

prove the patio temporal equivalence rigorously. The most relevant paper in proving the spatiotemporal 

equivalence drew a connection between the spatial and temporal apertures in a somewhat different—and very 

elegant—manner. However, a precise numerical approximation scheme for evaluating the continuous time 

integration in the discrete spatial domain is not pursued. Also, Klompenhouwer’s paper is focused on the unit 

step input signal (which is a 1-D signal), whereas our study focuses on the general video signals. The third 
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objective of this paper is to propose a de convolution algorithm based on the spatiotemporal equivalence. A 

limitation of MCIF is that the MCIF cannot take into account of the spatial and temporal consistencies. Spatial 

consistency means that a pixel should have a value similar to its neighbors, unless it is along an edge in an 

image. Temporal consistency means that a pixel value should not change abruptly along the time axis, for 

otherwise; it will be seen as flickering artifacts. In this paper, we use a spatial regularization function to penalize 

variations in the spatial domain caused by noise. The L1-normed regularization function used in our method is 

able to suppress the noise while preserving the edges. We also use a temporal regularization function to 

maintain the smoothness of the images along the time axis. Proposed similar regularization functions in the 

context of coding artifacts removal. However, their problem setup is easier than ours because there is no 

blurring operator in their problem. 

 

Organization 

The organization of this paper is as follows. We prove the spatiotemporal equivalence. We show by 

experiments that the spatial approximation to the temporal integration is accurate.  we present the findings of 

human-eye tracking limits. Visual subjective tests are used to determine the optimal length of the FIR motion 

blur filter. In Section IV, we present the proposed algorithm. Comparisons with MCIF and Lucy–Richardson 

algorithm are discussed. 

 

IV. Eye Movement Limit 
We assume that our eye-tracking system is perfect, i.e., we can track moving objects at any speed. This 

assumption makes the derivation simpler, but it is not true in reality. A more realistic model is that our eyes 

have a speed limit. We provide supports to this argument through the literature in cognitive science and visual 

subjective tests. 

 

A. Eye Tracking 

Eye-tracking system, he mentions that when we look at a scene, our eyes are rapidly moving. The rapid 

movement is known as the saccades, which can be as high as 500. However, at such a high speed, we can hardly 

see any visual content. This phenomenon is known as the saccade suppression Therefore; most of the images 

perceived are obtained during a period of time (typically about 200–300 ms) between saccades. This period is 

known as the fixation. If an object is moving quickly, then the duration of fixation is shortened, and hence, the 

perceptual quality reduces. Therefore, even if our eyes may be able to track an object, we may not be able to see 

what it is. The relation between object speed and perceived sharpness can be concluded from the following 

findings.  In their first experiment, they asked the  

 

 
Fig. 3. Simulation results of spatial and temporal integration. Top row: original input image; middle row: 

simulated blur using spatial integration; and bottom row: simulated blur using temporal integration. 

 

Viewers to track a moving image with their heads stay at a fixed position (referred to as the fixation 

condition). The conclusion is that the perceived sharpness drops to a minimum score when picture speed is 

beyond 5 s .  In the second experiment by Viewers were allowed to move their heads (referred to as the pursuit 

condition). The conclusion is that the perceived sharpness drops to a minimum score when picture speed is 

beyond 35 s studied a mathematical model for temporal sub sampling. They mentioned that there is a maximum 

Eye-tracking velocity of 5 –50 s, which had been experimentally justified. The discrimination of human eyes on 

televised moving images of high resolution (300 lines) and low resolution (150 lines). Their results show that it 

is harder for human eye to discriminate high- from low resolution images if the speed increases.5) Studied the 

relation between pursuit eye movement and perceptual performance. The viewers were asked to track a moving 

image of speed 4 s. Results show that the recorded the eye velocities are ranged between 3 and 4.5 s . The 

conclusion of these findings is that when picture motion increases, the perceptual sharpness decreases. In some 
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experiments, the maximum picture speed is found to be 5 for fixation condition, and 35 s for pursuit condition. 

Beyond this threshold, our eyes are unable to capture visual content from the image. 

 

V. Deblurring Algorithm 
The objective of this section is to propose a de blurring algorithm for LCD motion blur reduction. 

A. Optimization Formulation 

First, by spatiotemporal equivalence, we know that the observed (blurred) image is related to the original (sharp) 

image by a linear convolution. 

 

B. Spatial Regularization 
The spatial regularization function is defined by the gradients of the image. Specifically, we define the 

directional gradient operators 

 

C. Temporal Regularization 

Although the spatial regularization function can be applied to each frame of a video individually, the 

temporal consistency of the video is not guaranteed. Temporal consistency describes whether two adjacent 

frames have a smooth transition. If a pixel has a sudden increase/decrease in brightness along the time axis, then 

it is said to have temporal inconsistency.  Note that pixels around the edges of the window have different 

intensities in the two adjacent frames, although they are at the same location. To enhance the temporal 

consistency, we introduce regularization function along the temporal direction.  

 

VI. Simulation& Synthesis Results 

 
Fig.4 Blurred video 
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Fig 5. Quality metric analysis 
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Fig 6. Input, Output Video Comparison. 

 

VII. Conclusion 
This paper has three contributions. First, we proved the equivalence between temporal and spatial 

integration. The equivalence allows us to simulate the LCD blur efficiently in the spatial domain, instead of a 

time-consuming integration in the temporal domain.  Second, we studied the limit of eye movement speed. 

Based on a number of papers in the cognitive science literature, we showed that perceptual quality reduces as 

picture motion increases. Beyond certain speed limit, human eyes cannot retrieve any useful content from the 

picture. Consequently, we showed that the size of the LCD motion blur filter should be limited, and the optimal 

size can be determined using a visual subjective test. Third, we proposed an optimization framework to 

preprocess the LCD signal so that it can compensate the motion blur. In order to maintain the spatial and 

temporal consistencies, we introduced an -norm regularization function on the directional derivatives and an –

norm regularization function on difference between current and previous solutions. Experimental results showed 

that our proposed method has relatively higher PSNR, and lower spatial and temporal error than state-of-art 

algorithms. Future research directions include the robustness of the algorithm toward the errors introduced by 

motion estimation algorithms, and methods to restore texture areas. 

. 
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